

SD1538-02

RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS

- DESIGNED FOR HIGH POWER PULSED IFF, DME, TACAN APPLICATIONS
- 200 WATTS (typ.) IFF 1030 1090 MHz
- 150 WATTS (min.) DME 1025 1150 MHz
- 140 WATTS (typ.) TACAN 960 1215 MHz
- 7.8 dB MIN. GAIN
- REFRACTORY GOLD METALLIZATION
- EMITTER BALLASTING AND LOW THERMAL RESISTANCE FOR RELIABILITY AND RUGGEDNESS
- 30:1 LOAD VSWR CAPABILITY AT SPECIFIED OPERATING CONDITIONS
- INPUT/OUTPUT MATCHED, COMMON BASE CONFIGURATION

4. Base

2. Base

DESCRIPTION

The SD1538-02 is a gold metallized silicon, NPN power transistor designed for applications requiring high peak power and low duty cycles such as IFF, DME and TACAN. The SD1538-02 is packaged in a metal/ceramic package with internal input/output matching resulting in improved broadband performance and a low thermal resistance.

ABSOLUTE MAXIMUM RATINGS ($T_{case} = 25^{\circ}C$)

Symbol	Parameter	Value	Unit	
V _{CBO}	Collector-Base Voltage	65	V	
V _{CES}	Collector-Emitter Voltage	65	V	
V _{EBO}	Emitter-Base Voltage	3.5	V	
lc	Device Current	11.0	А	
PDISS	Power Dissipation	583	W	
TJ	Junction Temperature	+200	°C	
T _{STG}	Storage Temperature	– 65 to +150	°C	

THERMAL DATA

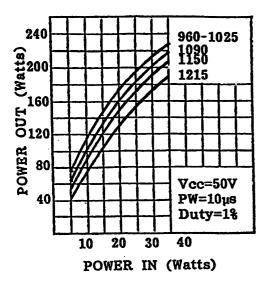
R _{TH(j-c)}	Junction-Case Thermal Resistance	0.30	°C/W	
November 1992			1/5	

SD1538-02

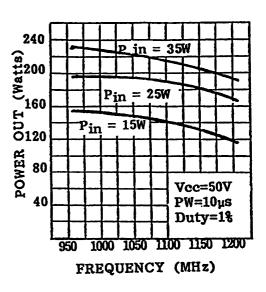
ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

STATIC

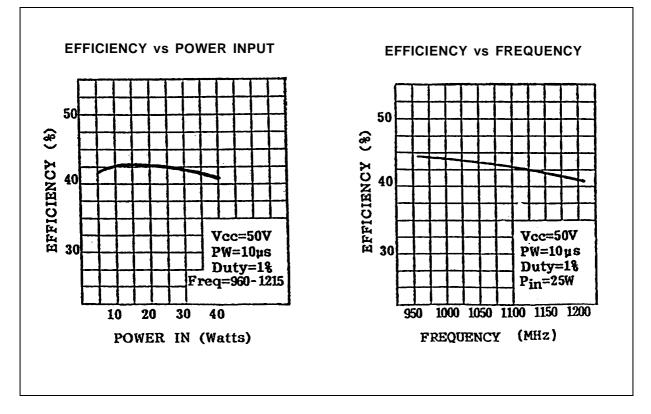
Symbol	Test Conditions	Value			Unit		
		Min.	Тур.	Max.	Unit		
ВVсво	$I_C = 10 mA$	$I_E = 0 m A$		65			V
BVCES	$I_C = 25 mA$	$V_{BE} = 0V$		65		_	V
BV _{EBO}	$I_E = 5 m A$	$I_C = 0 m A$		3.5		_	V
ICES	$V_{CE} = 50V$	$I_E = 0 m A$			_	10	mA
hfe	$V_{CE} = 5V$	$I_C = 300 \text{mA}$		5		_	

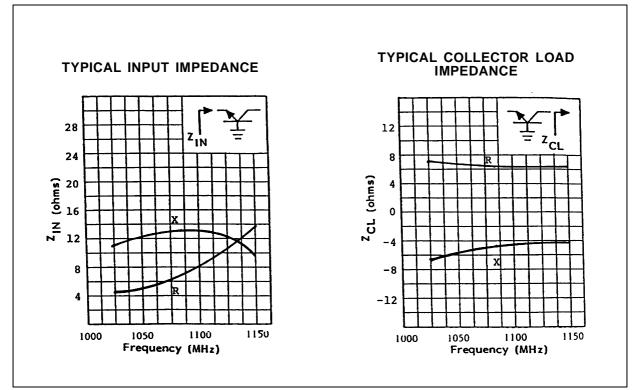

DYNAMIC

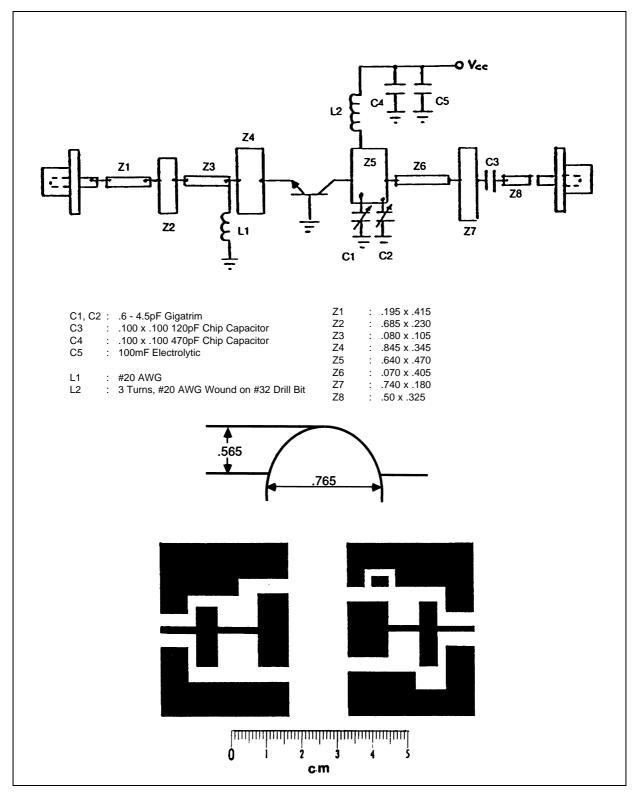
Symbol		Test Conditions		Value		
Symbol	Тур.			Max.	Unit	
	Роит	$f = 1025 - 1150 MHz P_{IN} = 25.0 W V_{CE} = 50 V$	150	_		W
	GP	$f = 1025 - 1150 MHz P_{IN} = 25.0 W V_{CE} = 50 V$	7.8	_		dB


Note: Pulse Width = 10μ Sec, Duty Cycle = 1%This device is suitable for use under other pulse width/duty cycle conditions. Please contact the factory for specific applications assistance.

TYPICAL PERFORMANCE

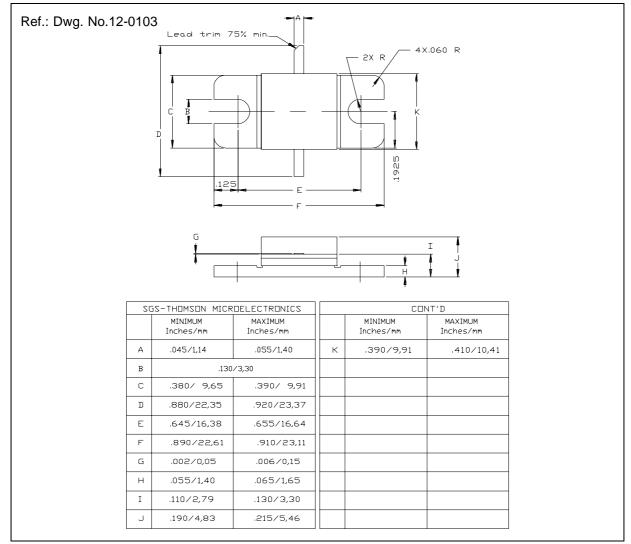

POWER OUTPUT vs POWER INPUT


POWER OUTPUT vs FREQUENCY


TYPICAL PERFORMANCE (cont'd)

IMPEDANCE DATA

TEST CIRCUIT AND PC BOARD LAYOUT



SGS-THOMSON MICROELECTRONICS

57.

4/5

PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

